Search results
Results from the WOW.Com Content Network
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
Another benefit from allowing signed integer overflow to be undefined is that it makes it possible to store and manipulate a variable's value in a processor register that is larger than the size of the variable in the source code. For example, if the type of a variable as specified in the source code is narrower than the native register width ...
In the C# programming language, or any language that uses .NET, the DateTime structure stores absolute timestamps as the number of tenth-microseconds (10 −7 s, known as "ticks" [80]) since midnight UTC on 1 January 1 AD in the proleptic Gregorian calendar, [81] which will overflow a signed 64-bit integer on 14 September 29,228 at 02:48:05 ...
For integers, the term "integer underflow" typically refers to a special kind of integer overflow or integer wraparound condition whereby the result of subtraction would result in a value less than the minimum allowed for a given integer type, i.e. the ideal result was closer to negative infinity than the output type's representable value ...
There is no universal solution for the Year 2038 problem. For example, in the C language, any change to the definition of the time_t data type would result in code-compatibility problems in any application in which date and time representations are dependent on the nature of the signed 32-bit time_t integer.
An example, suppose we add 127 and 127 using 8-bit registers. 127+127 is 254, but using 8-bit arithmetic the result would be 1111 1110 binary, which is the two's complement encoding of −2, a negative number. A negative sum of positive operands (or vice versa) is an overflow.
Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of incorrect results (or exceptions) due to simple overflow.
A stack may be implemented as, for example, a singly linked list with a pointer to the top element. A stack may be implemented to have a bounded capacity. If the stack is full and does not contain enough space to accept another element, the stack is in a state of stack overflow. A stack is needed to implement depth-first search.