Search results
Results from the WOW.Com Content Network
Since m 0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E ′ and p ′ as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as ...
This operator occurs in relativistic quantum field theory, such as the Dirac equation and other relativistic wave equations, since energy and momentum combine into the 4-momentum vector above, momentum and energy operators correspond to space and time derivatives, and they need to be first order partial derivatives for Lorentz covariance.
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields.
The concept of energy became a key part of Newtonian mechanics in the post-Newton period. Huygens' solution of the collision of hard spheres showed that in that case, not only is momentum conserved, but kinetic energy is as well (or, rather, a quantity that in retrospect we can identify as one-half the total kinetic energy).
The momentum and energy equations also apply to the motions of objects that begin together and then move apart. For example, an explosion is the result of a chain reaction that transforms potential energy stored in chemical, mechanical, or nuclear form into kinetic energy, acoustic energy, and electromagnetic radiation.
In special relativity, four-momentum (also called momentum–energy or momenergy [1]) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions ; similarly four-momentum is a four-vector in spacetime .
The relativistic mass-energy relation: = + where again E = total energy, p = total 3-momentum of the particle, m = invariant mass, and c = speed of light, can similarly yield the Klein–Gordon equation: ^ = ^ + ^ = ^ + where ^ is the momentum operator.
Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r from the axis.