Search results
Results from the WOW.Com Content Network
The average albedo of Earth is about 0.3. [15] This is far higher than for the ocean primarily because of the contribution of clouds. Earth's surface albedo is regularly estimated via Earth observation satellite sensors such as NASA's MODIS instruments on board the Terra and Aqua satellites, and the CERES instrument on the Suomi NPP and JPSS.
In planetary geology, an albedo feature is a large area on the surface of a planet (or other Solar System body) which shows a contrast in brightness or darkness with adjacent areas. Historically, albedo features were the first (and usually only) features to be seen and named on Mars and Mercury .
The albedo of several types of roofs (lower values means higher temperatures). Reflective surfaces, or ground-based albedo modification (GBAM), is a solar radiation management method of enhancing Earth's albedo (the ability to reflect the visible, infrared, and ultraviolet wavelengths of the Sun, reducing heat transfer to the surface).
Cloud albedo is a measure of the albedo or reflectivity of a cloud. Clouds regulate the amount of solar radiation absorbed by a planet and its solar surface irradiance . Generally, increased cloud cover correlates to a higher albedo and a lower absorption of solar energy .
is Earth's average albedo, measured to be 0.3. [11] [12] is Earth's average surface temperature, measured as about 288 K as of year 2020 [13] is the effective emissivity of Earth's combined surface and atmosphere (including clouds). It is a quantity between 0 and 1 that is calculated from the equilibrium to be about 0.61.
However, it also increases the global albedo from 15% to 30%, and this reduces the amount of solar radiation absorbed by the Earth by about 44 W/m 2. Thus, there is a net cooling of about 13 W/m 2. [22] If the clouds were removed with all else remaining the same, the Earth would lose this much cooling and the global temperatures would increase.
Diffuse reflection on sphere and flat disk, each for the case of a geometric albedo of 1. For the hypothetical case of a plane surface, the geometric albedo is the albedo of the surface when the illumination is provided by a beam of radiation that comes in perpendicular to the surface.
Ice–albedo feedback is a climate change feedback, where a change in the area of ice caps, glaciers, and sea ice alters the albedo and surface temperature of a planet. Because ice is very reflective, it reflects far more solar energy back to space than open water or any other land cover. [1] It occurs on Earth, and can also occur on exoplanets ...