enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commutator - Wikipedia

    en.wikipedia.org/wiki/Commutator

    The set of all commutators of a group is not in general closed under the group operation, but the subgroup of G generated by all commutators is closed and is called the derived group or the commutator subgroup of G. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group.

  3. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    According to the correspondence principle, in certain limits the quantum equations of states must approach Hamilton's equations of motion.The latter state the following relation between the generalized coordinate q (e.g. position) and the generalized momentum p: {˙ = = {,}; ˙ = = {,}.

  4. Commutator subgroup - Wikipedia

    en.wikipedia.org/wiki/Commutator_subgroup

    However, the product of two or more commutators need not be a commutator. A generic example is [a,b][c,d] in the free group on a,b,c,d. It is known that the least order of a finite group for which there exists two commutators whose product is not a commutator is 96; in fact there are two nonisomorphic groups of order 96 with this property. [3]

  5. Commutator collecting process - Wikipedia

    en.wikipedia.org/wiki/Commutator_collecting_process

    The basic commutators of weight w > 1 are the elements [x, y] where x and y are basic commutators whose weights sum to w, such that x > y and if x = [u, v] for basic commutators u and v then v ≤ y. Commutators are ordered so that x > y if x has weight greater than that of y , and for commutators of any fixed weight some total ordering is chosen.

  6. Baker–Campbell–Hausdorff formula - Wikipedia

    en.wikipedia.org/wiki/Baker–Campbell...

    For many purposes, it is only necessary to know that an expansion for in terms of iterated commutators of and exists; the exact coefficients are often irrelevant. (See, for example, the discussion of the relationship between Lie group and Lie algebra homomorphisms in Section 5.2 of Hall's book, [2] where the precise coefficients play no role in the argument.)

  7. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    Poisson brackets deform to Moyal brackets upon quantization, that is, they generalize to a different Lie algebra, the Moyal algebra, or, equivalently in Hilbert space, quantum commutators. The Wigner-İnönü group contraction of these (the classical limit, ħ → 0) yields the above Lie algebra.

  8. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    The classical definition of angular momentum is =.The quantum-mechanical counterparts of these objects share the same relationship: = where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator.

  9. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.