Search results
Results from the WOW.Com Content Network
U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [ 2 ] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation .
ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning ...
The image is successively split into quadrants based on a homogeneity criterion and similar regions are merged to create the segmented result. The technique incorporates a quadtree data structure, meaning that there is a parent-child node relationship.
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...
Given an image D containing an instance of a known object category, e.g. cows, the OBJ CUT algorithm computes a segmentation of the object, that is, it infers a set of labels m. Let m be a set of binary labels, and let Θ {\displaystyle \Theta } be a shape parameter( Θ {\displaystyle \Theta } is a shape prior on the labels from a layered ...
The resulting image is larger than the original, and preserves all the original detail, but has (possibly undesirable) jaggedness. The diagonal lines of the "W", for example, now show the "stairway" shape characteristic of nearest-neighbor interpolation. Other scaling methods below are better at preserving smooth contours in the image.
The random walker algorithm is a segmentation algorithm solving the combinatorial Dirichlet problem, adapted to image segmentation by L. Grady in 2006. [16] In 2011, C. Couprie et al. proved that when the power of the weights of the graph converge toward infinity, the cut minimizing the random walker energy is a cut by maximum spanning forest. [17]
Image segmentation strives to partition a digital image into regions of pixels with similar properties, e.g. homogeneity. [1] The higher-level region representation simplifies image analysis tasks such as counting objects or detecting changes, because region attributes (e.g. average intensity or shape [2]) can be compared more readily than raw ...