Search results
Results from the WOW.Com Content Network
If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]
In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]
Polyhedra that can tessellate space to form a honeycomb in which all cells are congruent. Subcategories This category has the following 2 subcategories, out of 2 total.
Hyperbolic; Article Vertex configuration Schläfli symbol Image Snub tetrapentagonal tiling: 3 2.4.3.5 : sr{5,4} Snub tetrahexagonal tiling: 3 2.4.3.6 : sr{6,4} Snub tetraheptagonal tiling
Although a cube is the only regular polyhedron that admits of tessellation, many non-regular 3-dimensional shapes can tessellate, such as the truncated octahedron. The second part of Hilbert's eighteenth problem asked for a single polyhedron tiling Euclidean 3-space , such that no tiling by it is isohedral (an anisohedral tile).
This makes it impossible to generate a covered plane given the notation alone. And second, some tessellations have the same nomenclature, they are very similar but it can be noticed that the relative positions of the hexagons are different. Therefore, the second problem is that this nomenclature is not unique for each tessellation.
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).
If a polygon can tile the plane, its prism is space-filling; examples include the cube, triangular prism, and the hexagonal prism. Any parallelepiped tessellates Euclidean 3-space , as do the five parallelohedra including the cube, hexagonal prism, truncated octahedron , and rhombic dodecahedron .