Search results
Results from the WOW.Com Content Network
The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to effectively stop learning. RNNs using LSTM units ...
Bayesian learning mechanisms are probabilistic causal models [1] used in computer science to research the fundamental underpinnings of machine learning, and in cognitive neuroscience, to model conceptual development. [2] [3]
Variational Bayesian methods are a family of techniques for approximating intractable integrals arising in Bayesian inference and machine learning.They are typically used in complex statistical models consisting of observed variables (usually termed "data") as well as unknown parameters and latent variables, with various sorts of relationships among the three types of random variables, as ...
The standard LSTM architecture was introduced in 2000 by Felix Gers, Schmidhuber, and Fred Cummins. [20] Today's "vanilla LSTM" using backpropagation through time was published with his student Alex Graves in 2005, [21] [22] and its connectionist temporal classification (CTC) training algorithm [23] in 2006. CTC was applied to end-to-end speech ...
Online machine learning, from the work of Nick Littlestone [citation needed]. While its primary goal is to understand learning abstractly, computational learning theory has led to the development of practical algorithms. For example, PAC theory inspired boosting, VC theory led to support vector machines, and Bayesian inference led to belief ...
This statistics -related article is a stub. You can help Wikipedia by expanding it.
In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.
The key goal when using MoE in deep learning is to reduce computing cost. Consequently, for each query, only a small subset of the experts should be queried. This makes MoE in deep learning different from classical MoE. In classical MoE, the output for each query is a weighted sum of all experts' outputs. In deep learning MoE, the output for ...