Search results
Results from the WOW.Com Content Network
In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...
For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6. Nicolaas Govert de Bruijn coined the word multiset in the 1970s, according to Donald Knuth.
Sometimes the items derive from a common type; even deriving from the most general type of a programming language such as object or variant. Although easily confused with implementations in programming languages, collection, as an abstract concept, refers to mathematical concepts which can be misunderstood when the focus is on an implementation.
In mathematics, the Dershowitz–Manna ordering is a well-founded ordering on multisets named after Nachum Dershowitz and Zohar Manna.It is often used in context of termination of programs or term rewriting systems.
As an example, a term rewriting system for "multiplying out" mathematical expressions could contain a rule x*(y+z) → (x*y) + (x*z). In order to prove termination, a reduction ordering (>) must be found with respect to which the term x*(y+z) is greater than the term (x*y)+(x*z). This is not trivial, since the former term contains both fewer ...
The 3-partition problem remains NP-complete even when the integers in S are bounded above by a polynomial in n.In other words, the problem remains NP-complete even when representing the numbers in the input instance in unary. i.e., 3-partition is NP-complete in the strong sense or strongly NP-complete.
In C++, associative containers are a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. [1] Being templates , they can be used to store arbitrary elements, such as integers or custom classes.
Throughout this article, capital letters (such as ,,,,, and ) will denote sets.On the left hand side of an identity, typically, will be the leftmost set, will be the middle set, and