Search results
Results from the WOW.Com Content Network
If the radii are equal, the radical axis is the line segment bisector of M 1, M 2. In any case the radical axis is a line perpendicular to ¯. On notations. The notation radical axis was used by the French mathematician M. Chasles as axe radical. [1] J.V. Poncelet used chorde ideale. [2]
The radical axis of a pair of circles is defined as the set of points that have equal power h with respect to both circles. For example, for every point P on the radical axis of circles 1 and 2, the powers to each circle are equal: h 1 = h 2. Similarly, for every point on the radical axis of circles 2 and 3, the powers must be equal, h 2 = h 3.
If P = (x 1, y 1) and the circle has centre (a, b) and radius r, then the tangent line is perpendicular to the line from (a, b) to (x 1, y 1), so it has the form (x 1 − a)x + (y 1 – b)y = c. Evaluating at (x 1, y 1) determines the value of c, and the result is that the equation of the tangent is + = + (), or () + () =.
Now consider a point Q(x 1,0) and line segments PQ ⊥ OQ. The result is a right triangle OPQ with ∠QOP = t. Because PQ has length y 1, OQ length x 1, and OP has length 1 as a radius on the unit circle, sin(t) = y 1 and cos(t) = x 1. Having established these equivalences, take another radius OR from the origin to a point R(−x 1,y 1) on the ...
The standard orientation, where the xy-plane is horizontal and the z-axis points up (and the x- and the y-axis form a positively oriented two-dimensional coordinate system in the xy-plane if observed from above the xy-plane) is called right-handed or positive. 3D Cartesian coordinate handedness. The name derives from the right-hand rule.
This special line is the radical line of the two circles. Intersection of two circles with centers on the x-axis, their radical line is dark red. Special case = = = : In this case the origin is the center of the first circle and the second center lies on the x-axis (s. diagram).
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
Let O 1 and O 2 be the centers of the two circles, C 1 and C 2 and let r 1 and r 2 be their radii, with r 1 > r 2; in other words, circle C 1 is defined as the larger of the two circles. Two different methods may be used to construct the external and internal tangent lines.