Search results
Results from the WOW.Com Content Network
For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6. Nicolaas Govert de Bruijn coined the word multiset in the 1970s, according to Donald Knuth.
In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...
Throughout this article, capital letters (such as ,,,,, and ) will denote sets.On the left hand side of an identity, typically, will be the leftmost set, will be the middle set, and
Compared to other parallel-processing models, Linda is more orthogonal in treating process coordination as a separate activity from computation, and it is more general in being able to subsume various levels of concurrency—uniprocessor, multi-threaded multiprocessor, or networked—under a single model.
The 3-partition problem remains NP-complete even when the integers in S are bounded above by a polynomial in n.In other words, the problem remains NP-complete even when representing the numbers in the input instance in unary. i.e., 3-partition is NP-complete in the strong sense or strongly NP-complete.
Let C i (for i between 1 and k) be the sum of subset i in a given partition. Instead of minimizing the objective function max(C i), one can minimize the objective function max(f(C i)), where f is any fixed function. Similarly, one can minimize the objective function sum(f(C i)), or maximize min(f(C i)), or maximize sum(f(C i)).
There is an optimization version of the partition problem, which is to partition the multiset S into two subsets S 1, S 2 such that the difference between the sum of elements in S 1 and the sum of elements in S 2 is minimized. The optimization version is NP-hard, but can be solved efficiently in practice. [4]