enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. H-derivative - Wikipedia

    en.wikipedia.org/wiki/H-derivative

    Download as PDF; Printable version; ... In mathematics, the H-derivative is a notion of derivative in the study of abstract Wiener spaces and the ... additional terms ...

  3. Quantum calculus - Wikipedia

    en.wikipedia.org/wiki/Quantum_calculus

    A function F(x) is an h-antiderivative of f(x) if D h F(x) = f(x).The h-integral is denoted by ().If a and b differ by an integer multiple of h then the definite integral () is given by a Riemann sum of f(x) on the interval [a, b], partitioned into sub-intervals of equal width h.

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Derivatives give an exact meaning to the notion of change in output concerning change in input. To be concrete, let f be a function, and fix a point a in the domain of f. (a, f(a)) is a point on the graph of the function. If h is a number close to zero, then a + h is a number close to a. Therefore, (a + h, f(a + h)) is close to (a, f(a)). The ...

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    velocity is the derivative (with respect to time) of an object's displacement (distance from the original position) acceleration is the derivative (with respect to time) of an object's velocity, that is, the second derivative (with respect to time) of an object's position. For example, if an object's position on a line is given by

  7. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    The H-derivative is a notion of derivative in the study of abstract Wiener spaces and the Malliavin calculus. It is used in the study of stochastic processes . Laplacians and differential equations using the Laplacian can be defined on fractals .

  8. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    Is an operation that takes two functions f and g and produces a function h such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function f to x. That is, the functions f : X → Y and g : Y → Z are composed to yield a function that maps x in X to g(f(x)) in Z. fundamental theorem of calculus

  9. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}