Search results
Results from the WOW.Com Content Network
Specifically, this dual space is the space of Radon measures on (regular Borel measures), denoted by (). This space, with the norm given by the total variation of a measure, is also a Banach space belonging to the class of ba spaces. (Dunford & Schwartz 1958, §IV.6.3)
The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the algebraic dual space. When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the continuous dual space.
Let B(Σ) be the space of bounded Σ-measurable functions, equipped with the uniform norm. Then ba(Σ) = B(Σ)* is the continuous dual space of B(Σ). This is due to Hildebrandt [4] and Fichtenholtz & Kantorovich. [5] This is a kind of Riesz representation theorem which allows for a measure to be represented as a linear functional on measurable ...
What follows are two results which will imply that an extended signed measure is the difference of two non-negative measures, and a finite signed measure is the difference of two finite non-negative measures. The Hahn decomposition theorem states that given a signed measure μ, there exist two measurable sets P and N such that: P∪N = X and P ...
To distinguish the ordinary dual space from the continuous dual space, the former is sometimes called the algebraic dual space. In finite dimensions, every linear functional is continuous, so the continuous dual is the same as the algebraic dual, but in infinite dimensions the continuous dual is a proper subspace of the algebraic dual.
The Frobenius norm defined by ‖ ‖ = = = | | = = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...
There are many closely related variations of the theorem, as the linear functionals can be complex, real, or positive, the space they are defined on may be the unit interval or a compact space or a locally compact space, the continuous functions may be vanishing at infinity or have compact support, and the measures can be Baire measures or ...
In mathematics, specifically linear algebra, a degenerate bilinear form f (x, y ) on a vector space V is a bilinear form such that the map from V to V ∗ (the dual space of V ) given by v ↦ (x ↦ f (x, v )) is not an isomorphism.