Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
This new class of preferred motions, too, defines a geometry of space and time—in mathematical terms, it is the geodesic motion associated with a specific connection which depends on the gradient of the gravitational potential. Space, in this construction, still has the ordinary Euclidean geometry. However, spacetime as
The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past. In general relativity, the metric tensor plays the role of the gravitational potential in the classical theory of gravitation, although the physical ...
In the normal Euclidean geometry, triangles obey the Pythagorean theorem, which states that the square distance ds 2 between two points in space is the sum of the squares of its perpendicular components = + + where dx, dy and dz represent the infinitesimal differences between the x, y and z coordinates of two points in a Cartesian coordinate ...
The geometry of general curved surfaces was developed in the early 19th century by Carl Friedrich Gauss. This geometry had in turn been generalized to higher-dimensional spaces in Riemannian geometry introduced by Bernhard Riemann in the 1850s. With the help of Riemannian geometry, Einstein formulated a geometric description of gravity in which ...
In Einstein's theory of relativity, the path of an object moving relative to a particular frame of reference is defined by four coordinate functions x μ (τ), where μ is a spacetime index which takes the value 0 for the timelike component, and 1, 2, 3 for the spacelike coordinates.
Fig 2-3 Different scales on the axes. The angle α between the x and x′ axes will be identical with that between the time axes ct and ct′. This follows from the second postulate of special relativity, which says that the speed of light is the same for all observers, regardless of their relative motion (see below). The angle α is given by [5]
The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation , the metric tensor can also be thought of as representing the 'gravitational potential'.