Search results
Results from the WOW.Com Content Network
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
In fluid dynamics, Hicks equation, sometimes also referred as Bragg–Hawthorne equation or Squire–Long equation, is a partial differential equation that describes the distribution of stream function for axisymmetric inviscid fluid, named after William Mitchinson Hicks, who derived it first in 1898.
Bragg–Gray cavity theory relates the radiation dose in a cavity volume of material to the dose that would exist in a surrounding medium in the absence of the cavity volume. It was developed in 1936 by British scientists Louis Harold Gray , William Henry Bragg , and William Lawrence Bragg .
Portrait of William Lawrence Bragg taken when he was around 40 years old. Sir William Lawrence Bragg (31 March 1890 – 1 July 1971), known as Lawrence Bragg, was an Australian-born British physicist and X-ray crystallographer, discoverer (1912) of Bragg's law of X-ray diffraction, which is basic for the determination of crystal structure.
Bragg curve of 5.49 MeV alpha particles in air. The force usually increases toward the end of range and reaches a maximum, the Bragg peak, shortly before the energy drops to zero. The curve that describes the force as function of the material depth is called the Bragg curve. This is of great practical importance for radiation therapy.
For premium support please call: 800-290-4726 more ways to reach us
The Bragg curve of 5.49 MeV alphas in air has its peak to the right and is skewed to the left, unlike the x-ray beam below.. The Bragg peak is a pronounced peak on the Bragg curve which plots the energy loss of ionizing radiation during its travel through matter.
Laue equation. In crystallography and solid state physics, the Laue equations relate incoming waves to outgoing waves in the process of elastic scattering, where the photon energy or light temporal frequency does not change upon scattering by a crystal lattice. They are named after physicist Max von Laue (1879–1960).