enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle ), so that the height of the cap is equal to the radius of the sphere, the spherical ...

  3. Volume element - Wikipedia

    en.wikipedia.org/wiki/Volume_element

    Consider the linear subspace of the n-dimensional Euclidean space R n that is spanned by a collection of linearly independent vectors , …,. To find the volume element of the subspace, it is useful to know the fact from linear algebra that the volume of the parallelepiped spanned by the is the square root of the determinant of the Gramian matrix of the : (), = ….

  4. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Area#Area formulas – Size of a two-dimensional surface; Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities

  5. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    The surface of the spherical segment (excluding the bases) is called spherical zone. Geometric parameters for spherical segment. If the radius of the sphere is called R , the radii of the spherical segment bases are a and b , and the height of the segment (the distance from one parallel plane to the other) called h , then the volume of the ...

  6. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...

  7. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume of the n-ball () can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate r and angular coordinates φ 1, …, φ n − 1, where the domain of each φ except φ n − 1 is [0, π), and the domain of φ n − 1 is [0, 2 π). The spherical volume element is:

  8. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    In this case the volume of the band is the volume of the whole sphere, which matches the formula given above. An early study of this problem was written by 17th-century Japanese mathematician Seki Kōwa. According to Smith & Mikami (1914), Seki called this solid an arc-ring, or in Japanese kokan or kokwan. [1]

  9. Spherical shell - Wikipedia

    en.wikipedia.org/wiki/Spherical_shell

    An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2], when t is very small compared to r (). The total surface area of the spherical shell is .