enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Fast R-CNN. While the original R-CNN independently computed the neural network features on each of as many as two thousand regions of interest, Fast R-CNN runs the neural network once on the whole image. [8] RoI pooling to size 2x2. In this example region proposal (an input parameter) has size 7x5.

  3. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    The standard method for training RNN by gradient descent is the "backpropagation through time" (BPTT) algorithm, which is a special case of the general algorithm of backpropagation. A more computationally expensive online variant is called "Real-Time Recurrent Learning" or RTRL, [ 78 ] [ 79 ] which is an instance of automatic differentiation in ...

  4. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function. Then, using PDF of each class, the class probability of a new input is estimated and Bayes’ rule is employed to allocate it to the class with the highest posterior probability. [13]

  5. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    A deep CNN of (Dan Cireșan et al., 2011) at IDSIA was 60 times faster than an equivalent CPU implementation. [12] Between May 15, 2011, and September 10, 2012, their CNN won four image competitions and achieved SOTA for multiple image databases. [13] [14] [15] According to the AlexNet paper, [1] Cireșan's earlier net is "somewhat similar."

  6. Template:Optimization algorithms - Wikipedia

    en.wikipedia.org/wiki/Template:Optimization...

    Place this template at the bottom of appropriate articles in optimization: {{Optimization algorithms}}For most transcluding articles, you should add the variable designating the most relevant sub-template: The additional variable will display the sub-template's articles (while hiding the articles in the other sub-templates):

  7. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    LeNet-5 architecture (overview). LeNet is a series of convolutional neural network structure proposed by LeCun et al. [1] The earliest version, LeNet-1, was trained in 1989.In general, when "LeNet" is referred to without a number, it refers to LeNet-5 (1998), the most well-known version.

  8. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [ 1 ] Similarly to the Manhattan update rule , Rprop takes into account only the sign of the partial derivative over all patterns (not the magnitude), and acts independently on each "weight".

  9. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, originally developed at University of California, Berkeley. It is open source, under a BSD license. [4] It is written in C++, with a Python interface. [5]