Ad
related to: all random variables algebra
Search results
Results from the WOW.Com Content Network
An expectation E on an algebra A of random variables is a normalized, positive linear functional. What this means is that E[k] = k where k is a constant; E[X * X] ≥ 0 for all random variables X; E[X + Y] = E[X] + E[Y] for all random variables X and Y; and; E[kX] = kE[X] if k is a constant. One may generalize this setup, allowing the algebra ...
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [ 2 ] but instead is a mathematical function in which
Pages in category "Algebra of random variables" The following 23 pages are in this category, out of 23 total. This list may not reflect recent changes. ...
Free variables and bound variables; A random variable is a kind of variable that is used in probability theory and its applications. All these denominations of variables are of semantic nature, and the way of computing with them is the same for all.
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
For example, it is used to equate a probability for a random variable with the Lebesgue-Stieltjes integral typically associated with computing the probability: = for all in the Borel σ-algebra on , where () is the cumulative distribution function for , defined on , while is a probability measure, defined on a σ-algebra of subsets of some ...
Whereas the PDF exists only for continuous random variables, the CDF exists for all random variables (including discrete random variables) that take values in . These concepts can be generalized for multidimensional cases on and other continuous sample spaces.
Formally, a multivariate random variable is a column vector = (, …,) (or its transpose, which is a row vector) whose components are random variables on the probability space (,,), where is the sample space, is the sigma-algebra (the collection of all events), and is the probability measure (a function returning each event's probability).
Ad
related to: all random variables algebra