Search results
Results from the WOW.Com Content Network
The simple Sethi–Ullman algorithm works as follows (for a load/store architecture): . Traverse the abstract syntax tree in pre- or postorder . For every leaf node, if it is a non-constant left-child, assign a 1 (i.e. 1 register is needed to hold the variable/field/etc.), otherwise assign a 0 (it is a non-constant right child or constant leaf node (RHS of an operation – literals, values)).
A tree-pyramid (T-pyramid) is a "complete" tree; every node of the T-pyramid has four child nodes except leaf nodes; all leaves are on the same level, the level that corresponds to individual pixels in the image.
Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. 89: Largest base for which all left-truncatable primes are known. 90: Nonagesimal: Related to Goormaghtigh conjecture for the generalized repunit numbers (111 in base 90 = 1111111111111 in base 2). 95: Number of printable ASCII characters ...
For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...
A computation tree is a representation for the computation steps of a non-deterministic Turing machine on a specified input. [1] A computation tree is a rooted tree of nodes and edges. Each node in the tree represents a single computational state, while each edge represents a transition to the next possible computation.
A binary tree can be implemented as a list of lists: the head of a list (the value of the first term) is the left child (subtree), while the tail (the list of second and subsequent terms) is the right child (subtree).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The tree-order is the partial ordering on the vertices of a tree with u < v if and only if the unique path from the root to v passes through u. A rooted tree T that is a subgraph of some graph G is a normal tree if the ends of every T-path in G are comparable in this tree-order (Diestel 2005, p. 15).