Search results
Results from the WOW.Com Content Network
A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by an atom or group. [1] [2] [3] It can be represented generically as:
A substitution reaction (also known as single displacement reaction or single substitution reaction) is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. [1] Substitution reactions are of prime importance in organic chemistry.
In continuum mechanics, a compatible deformation (or strain) tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such
Finally, Maxwell's equations cannot explain any phenomenon involving individual photons interacting with quantum matter, such as the photoelectric effect, Planck's law, the Duane–Hunt law, and single-photon light detectors. However, many such phenomena may be explained using a halfway theory of quantum matter coupled to a classical ...
Other phenomena can be modeled by simple harmonic motion, including the motion of a simple pendulum, although for it to be an accurate model, the net force on the object at the end of the pendulum must be proportional to the displacement (and even so, it is only a good approximation when the angle of the swing is small; see small-angle ...
The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal ...
Symmetry or anti-symmetry conditions are exploited in order to reduce the size of the model. Displacement compatibility, including any required discontinuity, is ensured at the nodes, and preferably, along the element edges as well, particularly when adjacent elements are of different types, material or thickness.
The equation is given by ¨ + ˙ + + = (), where the (unknown) function = is the displacement at time t, ˙ is the first derivative of with respect to time, i.e. velocity, and ¨ is the second time-derivative of , i.e. acceleration.