enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harold Edwards (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Harold_Edwards_(mathematician)

    In 1980, Edwards won the Leroy P. Steele Prize for Mathematical Exposition of the American Mathematical Society, for his books on the Riemann zeta function and Fermat's Last Theorem. [4] For his contribution in the field of the history of mathematics he was awarded the Albert Leon Whiteman Memorial Prize by the AMS in 2005. [5]

  3. Edward Charles Titchmarsh - Wikipedia

    en.wikipedia.org/wiki/Edward_Charles_Titchmarsh

    Titchmarsh was known for work in analytic number theory, Fourier analysis and other parts of mathematical analysis.He wrote several classic books in these areas; his book on the Riemann zeta-function was reissued in a 1986 edition edited by Roger Heath-Brown.

  4. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  5. On the Number of Primes Less Than a Given Magnitude

    en.wikipedia.org/wiki/On_the_Number_of_Primes...

    The analytic continuation of this zeta function ζ to all complex s ≠ 1; The entire function ξ(s), related to the zeta function through the gamma function (or the Π function, in Riemann's usage) The discrete function J(x) defined for x ≥ 0, which is defined by J(0) = 0 and J(x) jumps by 1/n at each prime power p n. (Riemann calls this ...

  6. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Riemann's explicit formula for the number of primes less than a given number states that, in terms of a sum over the zeros of the Riemann zeta function, the magnitude of the oscillations of primes around their expected position is controlled by the real parts of the zeros of the zeta function.

  7. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  8. Functional equation (L-function) - Wikipedia

    en.wikipedia.org/wiki/Functional_equation_(L...

    The functional equation in question for the Riemann zeta function takes the simple form = where Z(s) is ζ(s) multiplied by a gamma-factor, involving the gamma function. This is now read as an 'extra' factor in the Euler product for the zeta-function, corresponding to the infinite prime.

  9. Z function - Wikipedia

    en.wikipedia.org/wiki/Z_function

    Z function in the complex plane, plotted with a variant of domain coloring. Z function in the complex plane, zoomed out. In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half.