Search results
Results from the WOW.Com Content Network
Reaction mechanism for the amine formation from a carboxylic acid via Schmidt reaction. In the reaction mechanism for the Schmidt reaction of ketones, the carbonyl group is activated by protonation for nucleophilic addition by the azide, forming azidohydrin 3, which loses water in an elimination reaction to diazoiminium 5.
The Leuckart reaction is the chemical reaction that converts aldehydes or ketones to amines. The reaction is an example of reductive amination. [1] The reaction, named after Rudolf Leuckart, uses either ammonium formate or formamide as the nitrogen donor and reducing agent. It requires high temperatures, usually between 120 and 130 °C; for the ...
This yields an N-methyl-N-methoxy-enamine that converts to the corresponding ketone or aldehyde upon hydrolytic workup. [10] Reaction of Weinreb–Nahm amides with Wittig reagents. Additionally, a one-pot magnesium–halogen exchange with subsequent arylation has been developed, showcasing the stability of the Weinreb–Nahm amide and providing ...
The Buchner–Curtius–Schlotterbeck reaction is the reaction of aldehydes or ketones with aliphatic diazoalkanes to form homologated ketones. [1] It was first described by Eduard Buchner and Theodor Curtius in 1885 [ 2 ] and later by Fritz Schlotterbeck in 1907. [ 3 ]
Below, the reaction mechanism is shown with R 2 = H: Mukaiyama Aldol-MechanismusV7 en. In the cited example the Lewis acid TiCl 4 is used. First, the Lewis acid activates the aldehyde component followed by carbon-carbon bond formation between the enol silane and the activated aldehyde. With the loss of a chlorosilane the compound 1 is built.
The reaction of a substituted amide with phosphorus oxychloride gives a substituted chloroiminium ion (2), also called the Vilsmeier reagent. The initial product is an iminium ion (4b), which is hydrolyzed to the corresponding ketone or aldehyde during workup. [7] The Vilsmeier–Haack reaction
The Gewald reaction (or the Gewald aminothiophene synthesis) is an organic reaction involving the condensation of a ketone (or aldehyde when R 2 = H) with a α-cyanoester in the presence of elemental sulfur and base to give a poly-substituted 2-amino-thiophene. [1] [2] The Gewald reaction. The reaction is named after the German chemist Karl ...
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry.