enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cosine similarity - Wikipedia

    en.wikipedia.org/wiki/Cosine_similarity

    Cosine similarity can be seen as a method of normalizing document length during comparison. In the case of information retrieval, the cosine similarity of two documents will range from , since the term frequencies cannot be negative. This remains true when using TF-IDF weights. The angle between two term frequency vectors cannot be greater than ...

  3. Similarity (network science) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(network_science)

    Salton proposed that we regard the i-th and j-th rows/columns of the adjacency matrix as two vectors and use the cosine of the angle between them as a similarity measure. The cosine similarity of i and j is the number of common neighbors divided by the geometric mean of their degrees. [4] Its value lies in the range from 0 to 1.

  4. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    By using the cosine-similarity of the sentence embeddings of candidate and reference sentences as the evaluation function, a grid-search algorithm can be utilized to automate hyperparameter optimization [citation needed].

  5. Vector space model - Wikipedia

    en.wikipedia.org/wiki/Vector_space_model

    Candidate documents from the corpus can be retrieved and ranked using a variety of methods. Relevance rankings of documents in a keyword search can be calculated, using the assumptions of document similarities theory, by comparing the deviation of angles between each document vector and the original query vector where the query is represented as a vector with same dimension as the vectors that ...

  6. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    Goldberg and Levy point out that the word2vec objective function causes words that occur in similar contexts to have similar embeddings (as measured by cosine similarity) and note that this is in line with J. R. Firth's distributional hypothesis. However, they note that this explanation is "very hand-wavy" and argue that a more formal ...

  7. Latent space - Wikipedia

    en.wikipedia.org/wiki/Latent_space

    Several embedding models have been developed to perform this transformation to create latent space embeddings given a set of data items and a similarity function. These models learn the embeddings by leveraging statistical techniques and machine learning algorithms. Here are some commonly used embedding models: Word2Vec: [4] Word2Vec is a ...

  8. Latent semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Latent_semantic_analysis

    In the formula, A is the supplied m by n weighted matrix of term frequencies in a collection of text where m is the number of unique terms, and n is the number of documents. T is a computed m by r matrix of term vectors where r is the rank of A —a measure of its unique dimensions ≤ min( m,n ) .

  9. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .