enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  3. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    digital imaging (smallest addressable unit) Power factor: pf = electrical (real power to apparent power) Power number: N p = fluid mechanics, power consumption by rotary agitators; resistance force versus inertia force) Prater number: β

  4. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to ...

  5. Deborah number - Wikipedia

    en.wikipedia.org/wiki/Deborah_number

    The Deborah number (De) is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It quantifies the observation that given enough time even a solid-like material might flow, or a fluid-like material can act solid when it is deformed rapidly enough.

  6. Strouhal number - Wikipedia

    en.wikipedia.org/wiki/Strouhal_number

    [1] [2] The Strouhal number is an integral part of the fundamentals of fluid mechanics. The Strouhal number is often given as =, where f is the frequency of vortex shedding in Hertz, [3] L is the characteristic length (for example, hydraulic diameter or the airfoil thickness) and U is the flow velocity. In certain cases, like heaving (plunging ...

  7. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and ...

  8. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility [1] or, if the temperature is held constant, the isothermal compressibility [2]) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change.

  9. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    The measure of the internal friction in a fluid Pa⋅s L −1 M T −1: intensive, scalar Volume: V: Three dimensional extent of an object m 3: L 3: extensive, scalar Volumetric flow rate: Q: Rate of change of volume with respect to time m 3 ⋅s −1: L 3 T −1: extensive, scalar Wavelength: λ: Perpendicular distance between repeating units ...