Search results
Results from the WOW.Com Content Network
The planet's magnetosphere, though small enough to fit within Earth, [97] is strong enough to trap solar wind plasma. This contributes to the space weathering of the planet's surface. [104] Observations taken by the Mariner 10 spacecraft detected this low energy plasma in the magnetosphere of the planet's nightside. Bursts of energetic ...
Study of Earth's magnetosphere began in 1600, when William Gilbert discovered that the magnetic field on the surface of Earth resembled that of a terrella, a small, magnetized sphere. In the 1940s, Walter M. Elsasser proposed the model of dynamo theory , which attributes Earth's magnetic field to the motion of Earth's iron outer core .
The most abundant silicate minerals on the Earth's surface include quartz, the feldspars, amphibole, mica, pyroxene, and olivine. [25] Common carbonate minerals include calcite (found in limestone), aragonite, and dolomite. [26] Elevation histogram of the surface of the Earth—approximately 71% of the Earth's surface is covered with water.
A class of extrasolar planets whose characteristics are similar to Jupiter, but that have high surface temperatures because they orbit very close—between approximately 0.015 and 0.5 AU (2.2 × 10 ^ 6 and 74.8 × 10 ^ 6 km)—to their parent stars, whereas Jupiter orbits its parent star (the Sun) at 5.2 AU (780 × 10 ^ 6 km), causing low ...
At the surface it has a mean temperature of 737 K (464 °C; 867 °F) and a pressure 92 times that of Earth's at sea level. These extreme conditions compress carbon dioxide into a supercritical state at Venus's surface. Internally, Venus has a core, mantle, and crust.
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
[13] [14] Similarly, Earth has an effective temperature of 255 K (−18 °C; −1 °F), [14] but a surface temperature of about 288 K (15 °C; 59 °F) [15] due to the greenhouse effect in our lower atmosphere. [5] [4] The surface temperatures of such planets are more accurately estimated by modeling thermal radiation transport through the ...
The magnetic field is about 1.1% as strong as Earth's. [10] At the Hermean equator, the relative strength of the magnetic field is around 300 nT, which is weaker than that of Jupiter's moon Ganymede. [13] Mercury's magnetic field is weaker than Earth's because its core had cooled and solidified more quickly than Earth's. [14]