Search results
Results from the WOW.Com Content Network
An incremental encoder employs a quadrature encoder to generate its A and B output signals. The pulses emitted from the A and B outputs are quadrature-encoded, meaning that when the incremental encoder is moving at a constant velocity, the A and B waveforms are square waves and there is a 90 degree phase difference between A and B .
The A and B quadrature channels. A linear incremental encoder has two digital output signals, A and B, which issue quadrature squarewaves. Depending on its internal mechanism, an encoder may derive A and B directly from sensors which are fundamentally digital in nature, or it may interpolate its internal, analogue sine/cosine signals.
The interface keeps track of position by counting encoder pulses. It counts up when the quadrature phase difference is positive and down when the difference is negative, or vice versa. To do this, interfaces employ a quadrature decoder to convert the A and B pulses into direction and count enable signals, which in turn control an up/down counter.
A rotary incremental encoder has two output signals, A and B, which issue a periodic digital waveform in quadrature when the encoder shaft rotates. This is similar to sine encoders, which output sinusoidal waveforms in quadrature (i.e., sine and cosine), [ 13 ] thus combining the characteristics of an encoder and a resolver .
So for applications where 8 tracks were too bulky, people used single-track incremental encoders (quadrature encoders) or 2-track "quadrature encoder + reference notch" encoders. Norman B. Spedding, however, registered a patent in 1994 with several examples showing that it was possible. [74]
The quality the codec can achieve is heavily based on the compression format the codec uses. A codec is not a format, and there may be multiple codecs that implement the same compression specification – for example, MPEG-1 codecs typically do not achieve quality/size ratio comparable to codecs that implement the more modern H.264 specification.
The two amplitude-modulated components are known as the in-phase component (I, thin blue, decreasing) and the quadrature component (Q, thin red, increasing). A sinusoid with modulation can be decomposed into, or synthesized from, two amplitude-modulated sinusoids that are in quadrature phase , i.e., with a phase offset of one-quarter cycle (90 ...
Incremental encoding is widely used in information retrieval to compress the lexicons used in search indexes; these list all the words found in all the documents and a pointer for each one to a list of locations. Typically, it compresses these indexes by about 40%.