enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    It can only be used to draw a line segment between two points, or to extend an existing line segment. The compass can have an arbitrarily large radius with no markings on it (unlike certain real-world compasses). Circles and circular arcs can be drawn starting from two given points: the centre and a point on the circle. The compass may or may ...

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Construct the line segment BB' and using a hyperbolic ruler, construct the line OI" such that OI" is perpendicular to BB' and parallel to B'I". Then, line OA is the angle bisector for ᗉ IAI'. [3] Case 2c: IB' is ultraparallel to I'B. Using the ultraparallel theorem, construct the common perpendicular of IB' and I'B, CC'. Let the intersection ...

  4. Fermat point - Wikipedia

    en.wikipedia.org/wiki/Fermat_point

    Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...

  5. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  6. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    In elementary geometry the word congruent is often used as follows. [2] The word equal is often used in place of congruent for these objects. Two line segments are congruent if they have the same length. Two angles are congruent if they have the same measure. Two circles are congruent if they have the same diameter.

  7. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    Any two pairs of angles are congruent, [4] which in Euclidean geometry implies that all three angles are congruent: [a] If ∠BAC is equal in measure to ∠B'A'C', and ∠ABC is equal in measure to ∠A'B'C', then this implies that ∠ACB is equal in measure to ∠A'C'B' and the triangles are similar. All the corresponding sides are ...

  8. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    The concept of constructibility as discussed in this article applies specifically to compass and straightedge constructions. More constructions become possible if other tools are allowed. The so-called neusis constructions, for example, make use of a marked ruler. The constructions are a mathematical idealization and are assumed to be done exactly.

  9. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    Because the construction of the bisector is done without the knowledge of the segment's midpoint , the construction is used for determining as the intersection of the bisector and the line segment. This construction is in fact used when constructing a line perpendicular to a given line at a given point: drawing a circle whose center is such ...