Search results
Results from the WOW.Com Content Network
Bivariate analysis can help determine to what extent it becomes easier to know and predict a value for one variable (possibly a dependent variable) if we know the value of the other variable (possibly the independent variable) (see also correlation and simple linear regression). [2]
A basic question faced at the outset of analyzing a large set of testing results is whether there is evidence that any of the alternative hypotheses are true. One simple meta-test that can be applied when it is assumed that the tests are independent of each other is to use the Poisson distribution as a model for the number of significant ...
In some instances of bivariate data, it is determined that one variable influences or determines the second variable, and the terms dependent and independent variables are used to distinguish between the two types of variables. In the above example, the length of a person's legs is the independent variable. The stride length is determined by ...
Interaction effect of education and ideology on concern about sea level rise. In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable (that is, when effects of the two causes are not additive).
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.
It is possible to have multiple independent variables or multiple dependent variables. For instance, in multivariable calculus, one often encounters functions of the form z = f(x,y), where z is a dependent variable and x and y are independent variables. [8] Functions with multiple outputs are often referred to as vector-valued functions.
The image above depicts a visual comparison between multivariate analysis of variance (MANOVA) and univariate analysis of variance (ANOVA). In MANOVA, researchers are examining the group differences of a singular independent variable across multiple outcome variables, whereas in an ANOVA, researchers are examining the group differences of sometimes multiple independent variables on a singular ...
The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.