Search results
Results from the WOW.Com Content Network
In DACs, it is a measure of the deviation between the ideal output value and the actual measured output value for a certain input code. In ADCs, it is the deviation between the ideal input threshold value and the measured threshold level of a certain output code. This measurement is performed after offset and gain errors have been compensated. [1]
Differential nonlinearity (acronym DNL) is a commonly used measure of performance in digital-to-analog (DAC) and analog-to-digital (ADC) converters. It is a term describing the deviation between two analog values corresponding to adjacent input digital values.
Even if the plant is linear, a nonlinear controller can often have attractive features such as simpler implementation, faster speed, more accuracy, or reduced control energy, which justify the more difficult design procedure. An example of a nonlinear control system is a thermostat-controlled heating system. A building heating system such as a ...
If the users know the amount of the systematic error, they may decide to adjust for it manually rather than having the instrument expensively adjusted to eliminate the error: e.g. in the above example they might manually reduce all the values read by about 4.8%.
This problem arises from small differences in the individual responsitivity of the sensor array (including any local postamplification stages) that might be caused by variations in the pixel size, material or interference with the local circuitry. It might be affected by changes in the environment like different temperatures, exposure times, etc.
Because quantization is a many-to-few mapping, it is an inherently non-linear and irreversible process (i.e., because the same output value is shared by multiple input values, it is impossible, in general, to recover the exact input value when given only the output value).
A measurement system analysis (MSA) is a thorough assessment of a measurement process, and typically includes a specially designed experiment that seeks to identify the components of variation in that measurement process. Just as processes that produce a product may vary, the process of obtaining measurements and data may also have variation ...
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.