Search results
Results from the WOW.Com Content Network
In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current ...
In electromagnetism, current sources and sinks refers to points, areas, or volumes through which electric current enters or exits a system. While current sources or sinks are abstract elements used for analysis, generally they have physical counterparts in real-world applications; e.g. the anode or cathode in a battery.
Four-point measurement of resistance between voltage sense connections 2 and 3. Current is supplied via force connections 1 and 4. In electrical engineering, four-terminal sensing (4T sensing), 4-wire sensing, or 4-point probes method is an electrical impedance measuring technique that uses separate pairs of current-carrying and voltage-sensing electrodes to make more accurate measurements ...
The electrons, the charge carriers in an electrical circuit, flow in the direction opposite that of the conventional electric current. The symbol for a battery in a circuit diagram. The conventional direction of current, also known as conventional current, [10] [11] is arbitrarily defined as the direction in which positive charges flow.
The current's charge carriers are deflected by the Lorentz force in the presence of a magnetic field perpendicular to their flow. The sensing electrodes measure the potential difference (the Hall voltage) proportional to the axial component of the magnetic field that is perpendicular to both the current's axis and the sensing electrodes' axis. [5]
Chronoamperometry is the technique in which the current is measured, at a fixed potential, at different times since the start of polarisation. Chronoamperometry is typically carried out in unstirred solution and at the fixed electrode, i.e., under experimental conditions avoiding convection as the mass transfer to the electrode.
The first moving-pointer current-detecting device was the galvanometer in 1820. These were used to measure resistance and voltage by using a Wheatstone bridge, and comparing the unknown quantity to a reference voltage or resistance. While useful in the lab, the devices were very slow and impractical in the field.
As electric current detectors became more sensitive and less expensive, the Coulter counter became a common hospital laboratory instrument for quick and accurate analysis of complete blood counts (CBC). The CBC is used to determine the number or proportion of white and red blood cells in the body.