Search results
Results from the WOW.Com Content Network
The theorem is also useful on a more microscopic scale, in biology. Living systems, such as cells, can be analyzed thermodynamically. They are rather complex systems, where many energy transformations occur, and they often waste heat. Hence, the Gouy-Stodola theorem may be useful, in certain situations, to perform exergy analysis on such systems.
Schematic diagram of Gouy balance. The Gouy balance, invented by the French physicist Louis Georges Gouy, is a device for measuring the magnetic susceptibility of a sample. . The Gouy balance operates on magnetic torque, by placing the sample on a horizontal arm or beam suspended by a thin fiber, and placing either a permanent magnet or electromagnet on the other end of the arm, there is a ...
The Poisson–Boltzmann equation describes a model proposed independently by Louis Georges Gouy and David Leonard Chapman in 1910 and 1913, respectively. [3] In the Gouy-Chapman model, a charged solid comes into contact with an ionic solution, creating a layer of surface charges and counter-ions or double layer. [4]
Louis Georges Gouy. Louis Georges Gouy (February 19, 1854 – January 27, 1926) [1] was a French physicist.He is the namesake of the Gouy balance, the Gouy–Chapman electric double layer model (which is a relatively successful albeit limited model that describes the electrical double-layer which finds applications in vast areas of studies from physical chemistry to biophysics) and the Gouy phase.
The Gouy-Chapman model fails for highly charged DLs. In 1924, Otto Stern suggested combining the Helmholtz model with the Gouy-Chapman model: in Stern's model, some ions adhere to the electrode as suggested by Helmholtz, giving an internal Stern layer, while some form a Gouy-Chapman diffuse layer. [10]
The key point is that energy has quality or measures of usefulness, and this energy quality (or exergy content) is what is consumed or destroyed. This occurs because everything, all real processes, produce entropy and the destruction of exergy or the rate of "irreversibility" is proportional to this entropy production (Gouy–Stodola theorem ...
Littlewood's three principles are quoted in several real analysis texts, for example Royden, [2] Bressoud, [3] and Stein & Shakarchi. [4] Royden [5] gives the bounded convergence theorem as an application of the third principle. The theorem states that if a uniformly bounded sequence of functions converges pointwise, then their integrals on a ...
For example, the dihedral group D 8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D 8 is a product of r ' s and f ' s. However, we have, for example, rfr = f −1, r 7 = r −1, etc., so such products are not unique in D 8. Each such product equivalence can be expressed ...