Search results
Results from the WOW.Com Content Network
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
When matching database relates to a large scale of data, the O(mn) time with the dynamic programming algorithm cannot work within a limited time. So, the idea is to reduce the number of candidate pairs, instead of computing the similarity of all pairs of strings.
In computer science, the Boyer–Moore string-search algorithm is an efficient string-searching algorithm that is the standard benchmark for practical string-search literature. [1] It was developed by Robert S. Boyer and J Strother Moore in 1977. [ 2 ]
Gestalt pattern matching, [1] also Ratcliff/Obershelp pattern recognition, [2] is a string-matching algorithm for determining the similarity of two strings. It was developed in 1983 by John W. Ratcliff and John A. Obershelp and published in the Dr. Dobb's Journal in July 1988.
By far the most common form of pattern matching involves strings of characters. In many programming languages, a particular syntax of strings is used to represent regular expressions, which are patterns describing string characters. However, it is possible to perform some string pattern matching within the same framework that has been discussed ...
Trie data structures are commonly used in predictive text or autocomplete dictionaries, and approximate matching algorithms. [11] Tries enable faster searches, occupy less space, especially when the set contains large number of short strings, thus used in spell checking, hyphenation applications and longest prefix match algorithms.
The Rabin–Karp algorithm is inferior for single pattern searching to Knuth–Morris–Pratt algorithm, Boyer–Moore string-search algorithm and other faster single pattern string searching algorithms because of its slow worst case behavior. However, it is a useful algorithm for multiple pattern search.
The bitap algorithm (also known as the shift-or, shift-and or Baeza-Yates-Gonnet algorithm) is an approximate string matching algorithm. The algorithm tells whether a given text contains a substring which is "approximately equal" to a given pattern, where approximate equality is defined in terms of Levenshtein distance – if the substring and pattern are within a given distance k of each ...