Search results
Results from the WOW.Com Content Network
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is , , , , , … where r is the common ratio and a is the initial value. The sum of a geometric progression's terms is called a geometric series.
The more general class of p-series, =, exemplifies the possible results of the test: If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence.
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
The nth partial sum is given by a simple formula: = = (+). This equation was known to the Pythagoreans as early as the sixth century BCE. [5] Numbers of this form are called triangular numbers, because they can be arranged as an equilateral triangle.
The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of exponential and geometric sequences. It can also be used to illustrate sigma notation. When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation ...
[2] [4] Oresme's work, and the contemporaneous work of Richard Swineshead on a different series, marked the first appearance of infinite series other than the geometric series in mathematics. [5] However, this achievement fell into obscurity. [6] Additional proofs were published in the 17th century by Pietro Mengoli [2] [7] and by Jacob Bernoulli.
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]