Search results
Results from the WOW.Com Content Network
Central pattern generators are groups of neurons in the spinal cord that are responsible for generating stereotyped movement. It has been shown that in cats, rhythmic activation patterns are still observed following removal of sensory afferents and removal of the brain., [1] indicating that there is neural pattern generation in the spinal cord independent of descending signals from the brain ...
In physiology, motor coordination is the orchestrated movement of multiple body parts as required to accomplish intended actions, like walking. This coordination is achieved by adjusting kinematic and kinetic parameters associated with each body part involved in the intended movement.
A very important type of glial cell (oligodendrocytes in the central nervous system, and Schwann cells in the peripheral nervous system) generates layers of a fatty substance called myelin that wraps around axons and provides electrical insulation which allows them to transmit action potentials much more rapidly and efficiently. Recent findings ...
This flexible coordination can be accomplished by integrating the intrinsic regulation mechanism of the spinal cord, somatosensory feedback from the limbs and various supraspinal pathways in the model. [9] The mechanical linkages between the limbs and trunk is important for the stabilization of multi-limb coordination movements.
Perception is extremely important in motor control because it carries the relevant information about objects, environments and bodies which is used in organizing and executing actions and movements. What is perceived and how the subsequent information is used to organize the motor system is an ongoing area of research.
A motor skill is a function that involves specific movements of the body's muscles to perform a certain task. These tasks could include walking, running, or riding a bike. In order to perform this skill, the body's nervous system, muscles, and brain have to all work together.
Fine motor skill (or dexterity) is the coordination of small muscles in movement with the eyes, hands and fingers.The complex levels of manual dexterity that humans exhibit can be related to the nervous system.
Eye–hand coordination has been studied in activities as diverse as the movement of solid objects such as wooden blocks, archery, sporting performance, music reading, computer gaming, copy-typing, and even tea-making. It is part of the mechanisms of performing everyday tasks; in its absence, most people would not be able to carry out even the ...