Search results
Results from the WOW.Com Content Network
l = slope length α = angle of inclination. The grade (US) or gradient (UK) (also called stepth, slope, incline, mainfall, pitch or rise) of a physical feature, landform or constructed line is either the elevation angle of that surface to the horizontal or its tangent. It is a special case of the slope, where zero indicates horizontality. A ...
Stream gradient (or stream slope) is the grade (or slope) of a stream. It is measured by the ratio of drop in elevation and horizontal distance. [ 1 ] It is a dimensionless quantity , usually expressed in units of meters per kilometer (m/km) or feet per mile (ft/mi); it may also be expressed in percent (%).
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del.
The slope m is found taking the difference: = = (/) (/), where F 1 is shorthand for F(x 1) and F 2 is shorthand for F(x 2). The figure at right illustrates the formula. The figure at right illustrates the formula.
Typically on straight road sections, the drainage gradient is at least 1–3% due to the normal cross slope of 1–3%. In curved sections the drainage gradient is higher, and may often reach 5–12% due to superelevated CS that may reach 5–8% in areas with icy roads and up to 12% in areas without icy roads.
The gradient of an image is a vector of its partials: [2]: 165 = [] = [], where: is the derivative with respect to x (gradient in the x direction) is the derivative with respect to y (gradient in the y direction).
This shows that r xy is the slope of the regression line of the standardized data points (and that this line passes through the origin). Since − 1 ≤ r x y ≤ 1 {\displaystyle -1\leq r_{xy}\leq 1} then we get that if x is some measurement and y is a followup measurement from the same item, then we expect that y (on average) will be closer ...