Search results
Results from the WOW.Com Content Network
The fair polygon partitioning problem [20] is to partition a (convex) polygon into (convex) pieces with an equal perimeter and equal area (this is a special case of fair cake-cutting). Any convex polygon can be easily cut into any number n of convex pieces with an area of exactly 1/n. However, ensuring that the pieces have both equal area and ...
The presence of length variations creates a 2-D problem, because waste can occur both width-wise and length-wise. [citation needed] The guillotine problem is another 2-D problem of cutting sheets into rectangles of specified sizes, however only cuts that continue all the way across each sheet are allowed. Industrial applications of this problem ...
A = round (rand (3, 4, 5) * 10) % 3x4x5 three-dimensional or cubic array > A (:,:, 3) % 3x4 two-dimensional array along first and second dimensions ans = 8 3 5 7 8 9 1 4 4 4 2 5 > A (:, 2: 3, 3) % 3x2 two-dimensional array along first and second dimensions ans = 3 5 9 1 4 2 > A (2: end,:, 3) % 2x4 two-dimensional array using the 'end' keyword ...
The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator. If a is a row vector of size [1 n] and b is a corresponding column vector of size [n 1]. a * b; By contrast, the entrywise product is implemented as: a .* b;
In the most balanced case, each time we perform a partition we divide the list into two nearly equal pieces. This means each recursive call processes a list of half the size. Consequently, we can make only log 2 n nested calls before we reach a list of size 1. This means that the depth of the call tree is log 2 n.
However, there are three distinct ways of partitioning a square into three similar rectangles: [1] [2] The trivial solution given by three congruent rectangles with aspect ratio 3:1. The solution in which two of the three rectangles are congruent and the third one has twice the side length of the other two, where the rectangles have aspect ...
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Piecewise functions can be defined using the common functional notation, where the body of the function is an array of functions and associated subdomains. A semicolon or comma may follow the subfunction or subdomain columns. [ 4 ]