Search results
Results from the WOW.Com Content Network
In contrast to the frequency domain analysis of the classical control theory, modern control theory utilizes the time-domain state space representation, [citation needed] a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. To abstract from the number of inputs ...
Deterministic system (mathematics) Linear system; Partial differential equation; Dynamical systems and chaos theory; Chaos theory. Chaos argument; Butterfly effect; 0-1 test for chaos; Bifurcation diagram; Feigenbaum constant; Sharkovskii's theorem; Attractor. Strange nonchaotic attractor; Stability theory. Mechanical equilibrium; Astable ...
The phrase H ∞ control comes from the name of the mathematical space over which the optimization takes place: H ∞ is the Hardy space of matrix-valued functions that are analytic and bounded in the open right-half of the complex plane defined by Re(s) > 0; the H ∞ norm is the supremum singular value of the matrix over that space.
Almgren–Pitts min-max theory; Approximation theory; Arakelov theory; Asymptotic theory; Automata theory; Bass–Serre theory; Bifurcation theory; Braid theory
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time. [13] The minimum number of state variables required to represent a given system, , is usually equal to the order of the system's defining differential equation, but not necessarily.
Example Let the system be an n dimensional discrete-time-invariant system from the formula: ϕ ( n , 0 , 0 , w ) = ∑ i = 1 n A i − 1 B w ( n − 1 ) {\displaystyle \phi (n,0,0,w)=\sum \limits _{i=1}^{n}A^{i-1}Bw(n-1)} (Where ϕ {\displaystyle \phi } (final time, initial time, state variable, restrictions) is defined as the transition matrix ...
Adaptive control; Control theory – interdisciplinary branch of engineering and mathematics that deals with the behavior of dynamical systems. The usual objective of control theory is to calculate solutions for the proper corrective action from the controller that result in system stability. Digital control; Energy-shaping control; Fuzzy control