enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confocal microscopy - Wikipedia

    en.wikipedia.org/wiki/Confocal_microscopy

    Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]

  3. Confocal endoscopy - Wikipedia

    en.wikipedia.org/wiki/Confocal_endoscopy

    Similar to confocal microscopy, the laser in CLE filtered by the pinhole excites the fluorescent dye through a beam splitter and objective lens. The fluorescent emission then follows similar paths into the detector. A pinhole is used to select emissions from the desired focal plane. Two categories of CLE exist, namely probe-based (pCLE) and the ...

  4. Fluorescence microscope - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_microscope

    In 1978 first theoretical ideas have been developed to break this barrier by using a 4Pi microscope as a confocal laser scanning fluorescence microscope where the light is focused ideally from all sides to a common focus which is used to scan the object by 'point-by-point' excitation combined with 'point-by-point' detection. [9]

  5. Endomicroscopy - Wikipedia

    en.wikipedia.org/wiki/Endomicroscopy

    Endomicroscopy is a technique for obtaining histology-like images from inside the human body in real-time, [1] [2] [3] a process known as ‘optical biopsy’. [4] [5] It generally refers to fluorescence confocal microscopy, although multi-photon microscopy and optical coherence tomography have also been adapted for endoscopic use.

  6. 4Pi microscope - Wikipedia

    en.wikipedia.org/wiki/4Pi_Microscope

    A 4Pi microscope is a laser scanning fluorescence microscope with an improved axial resolution. With it the typical range of the axial resolution of 500–700 nm can be improved to 100–150 nm, which corresponds to an almost spherical focal spot with 5–7 times less volume than that of standard confocal microscopy. [1]

  7. Live-cell imaging - Wikipedia

    en.wikipedia.org/wiki/Live-cell_imaging

    [20] [21] Quantitative phase-contrast microscopy has an advantage over fluorescent and phase-contrast microscopy in that it is both non-invasive and quantitative in its nature. Due to the narrow focal depth of conventional microscopy, live-cell imaging is to a large extent currently limited to observing cells on a single plane.

  8. Nanoscale secondary ion mass spectrometry - Wikipedia

    en.wikipedia.org/wiki/Nanoscale_secondary_ion...

    Legin et al. [17] combined NanoSIMS with fluorescence confocal laser scanning microscopy to characterize the subcellular distribution of 15 N isotopically labeled Pt-bearing cisplatin in human colon cancer cells. Cisplatin appears in the targeted nucleus of the colon cancer cells.

  9. Microscopy - Wikipedia

    en.wikipedia.org/wiki/Microscopy

    Confocal laser scanning microscopy uses a focused laser beam (e.g. 488 nm) that is scanned across the sample to excite fluorescence in a point-by-point fashion. The emitted light is directed through a pinhole to prevent out-of-focus light from reaching the detector, typically a photomultiplier tube. The image is constructed in a computer ...