Search results
Results from the WOW.Com Content Network
The development of plants involves similar processes to that of animals. However, plant cells are mostly immotile so morphogenesis is achieved by differential growth, without cell movements. Also, the inductive signals and the genes involved are different from those that control animal development.
In animals, the process involves a sperm fusing with an ovum, which eventually leads to the development of an embryo. Depending on the animal species, the process can occur within the body of the female in internal fertilization, or outside in the case of external fertilization. The fertilized egg cell is known as the zygote. [2] [5]
Live cells were stained with DiI (red) or DiO (green). The red cells were genetically altered and express higher levels of E-cadherin than the green cells. The mixed culture forms large multi-cellular aggregates. At a tissue level, ignoring the means of control, morphogenesis arises because of cellular proliferation and motility. [9]
Development and regeneration involves the coordination and organization of populations cells into a blastema, which is "a mound of stem cells from which regeneration begins". [25] Dedifferentiation of cells means that they lose their tissue-specific characteristics as tissues remodel during the regeneration process.
Individual cells within a morphogenetic field in an embryo are flexible: thus, cells in a cardiac field can be redirected via cell-to-cell signaling to replace damaged or missing cells. [6] The Imaginal disc in larvae is an example of a discrete morphogenetic field region of cells in an insect embryo. [7]
Tissue growth is the process by which a tissue increases its size. In animals, tissue growth occurs during embryonic development, post-natal growth, and tissue regeneration. The fundamental cellular basis for tissue growth is the process of cell proliferation, which involves both cell growth and cell division occurring in parallel. [1] [2] [3] [4]
Some animals, like cnidarians, produce two germ layers (the ectoderm and endoderm) making them diploblastic. Other animals such as bilaterians produce a third layer (the mesoderm) between these two layers, making them triploblastic. Germ layers eventually give rise to all of an animal's tissues and organs through the process of organogenesis.
Gastrulation is the stage in the early embryonic development of most animals, during which the blastula (a single-layered hollow sphere of cells), or in mammals the blastocyst, is reorganized into a two-layered or three-layered embryo known as the gastrula. [1]