enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isoionic point - Wikipedia

    en.wikipedia.org/wiki/Isoionic_point

    The equation can be further simplified to calculate the pH by taking the negative logarithm of both sides to yield p H = p K 1 + p K 2 2 {\displaystyle pH={{pK_{1}+pK_{2}} \over {2}}} which shows that under certain conditions, the isoionic and isoelectric point are similar.

  3. Yield (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Yield_(chemistry)

    The theoretical molar yield is 2.0 mol (the molar amount of the limiting compound, acetic acid). The molar yield of the product is calculated from its weight (132 g ÷ 88 g/mol = 1.5 mol). The % yield is calculated from the actual molar yield and the theoretical molar yield (1.5 mol ÷ 2.0 mol × 100% = 75%). [citation needed]

  4. Weak base - Wikipedia

    en.wikipedia.org/wiki/Weak_base

    Given its greater H + concentration, the formula yields a lower pH value for the weak base. However, pH of bases is usually calculated in terms of the OH − concentration. This is done because the H + concentration is not a part of the reaction, whereas the OH − concentration is. The pOH is defined as:

  5. pH - Wikipedia

    en.wikipedia.org/wiki/PH

    The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [ 2 ] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [ 3 ]

  6. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]

  7. Charlot equation - Wikipedia

    en.wikipedia.org/wiki/Charlot_equation

    The Charlot equation, named after Gaston Charlot, is used in analytical chemistry to relate the hydrogen ion concentration, and therefore the pH, with the formal analytical concentration of an acid and its conjugate base. It can be used for computing the pH of buffer solutions when the approximations of the Henderson–Hasselbalch equation ...

  8. Green chemistry metrics - Wikipedia

    en.wikipedia.org/wiki/Green_chemistry_metrics

    Percentage yield is calculated by dividing the amount of the obtained desired product by the theoretical yield. [6] In a chemical process, the reaction is usually reversible, thus reactants are not completely converted into products; some reactants are also lost by undesired side reaction.

  9. Acid–base titration - Wikipedia

    en.wikipedia.org/wiki/Acid–base_titration

    The pH after the equivalence point depends on the concentration of the conjugate base of the weak acid and the strong base of the titrant. However, the base of the titrant is stronger than the conjugate base of the acid. Therefore, the pH in this region is controlled by the strong base. As such the pH can be found using the following: [1]