enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal neutral zone - Wikipedia

    en.wikipedia.org/wiki/Thermal_neutral_zone

    Conversely, we are normally in surroundings that are considerably cooler than the body's core temperature of 37 °C (98.6 °F) creating a gradient for thermal energy flow from the core to the surroundings. Therefore, the body must ensure it can also minimize the loss of heat to around 100 watts, if it is to maintain core temperature.

  3. Human thermoregulation - Wikipedia

    en.wikipedia.org/wiki/Human_thermoregulation

    There are four avenues of heat loss: convection, conduction, radiation, and evaporation. If skin temperature is greater than that of the surroundings, the body can lose heat by radiation and conduction. But, if the temperature of the surroundings is greater than that of the skin, the body actually gains heat by radiation and conduction. In such ...

  4. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]

  5. Thermal balance of the underwater diver - Wikipedia

    en.wikipedia.org/wiki/Thermal_balance_of_the...

    When heat loss exceeds heat generation, body temperature will fall. [2] Exertion increases heat production by metabolic processes, but when breathing gas is cold and dense, heat loss due to the increased volume of gas breathed to support these metabolic processes can result in a net loss of heat, even if the heat loss through the skin is minimised.

  6. Newton's law of cooling - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_cooling

    However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer. In that case, Newton's law only approximates the result when the temperature difference is relatively small. Newton himself realized this limitation. A correction to Newton's law concerning convection for ...

  7. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    The rate of heat loss of a body is proportional to the temperature difference between the body and its surroundings. However, by definition, the validity of Newton's law of cooling requires that the rate of heat loss from convection be a linear function of ("proportional to") the temperature difference that drives heat transfer, and in ...

  8. Thermoregulation - Wikipedia

    en.wikipedia.org/wiki/Thermoregulation

    There are four avenues of heat loss: evaporation, convection, conduction, and radiation. If skin temperature is greater than that of the surrounding air temperature, the body can lose heat by convection and conduction. However, if air temperature of the surroundings is greater than that of the skin, the body gains heat by convection and ...

  9. Hyperthermia - Wikipedia

    en.wikipedia.org/wiki/Hyperthermia

    Human heat-loss mechanisms are limited primarily to sweating (which dissipates heat by evaporation, assuming sufficiently low humidity) and vasodilation of skin vessels (which dissipates heat by convection proportional to the temperature difference between the body and its surroundings, according to Newton's law of cooling).