enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  3. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy.It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters.

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Partial summation of a sequence is an example of a linear sequence transformation, and it is also known as the prefix sum in computer science. The inverse transformation for recovering a sequence from its partial sums is the finite difference , another linear sequence transformation.

  5. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    Indeed, the elements of define a pointwise bounded family of continuous linear forms on the Banach space := ′, which is the continuous dual space of . By the uniform boundedness principle, the norms of elements of S , {\displaystyle S,} as functionals on X , {\displaystyle X,} that is, norms in the second dual Y ″ , {\displaystyle Y'',} are ...

  6. Uniform boundedness - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness

    In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is larger than or equal to the absolute value of any value of any of the functions in the family.

  7. Abel's test - Wikipedia

    en.wikipedia.org/wiki/Abel's_test

    The test is as follows. Let {g n} be a uniformly bounded sequence of real-valued continuous functions on a set E such that g n+1 (x) ≤ g n (x) for all x ∈ E and positive integers n, and let {f n} be a sequence of real-valued functions such that the series Σf n (x) converges uniformly on E. Then Σf n (x)g n (x) converges uniformly on E.

  8. Subsequence - Wikipedia

    en.wikipedia.org/wiki/Subsequence

    Every infinite sequence of real numbers has an infinite monotone subsequence (This is a lemma used in the proof of the Bolzano–Weierstrass theorem). Every infinite bounded sequence in R n {\displaystyle \mathbb {R} ^{n}} has a convergent subsequence (This is the Bolzano–Weierstrass theorem ).

  9. Bounded variation - Wikipedia

    en.wikipedia.org/wiki/Bounded_variation

    By definition it is also a Cauchy sequence in () and therefore has a limit in (): since is bounded in ⁡ for each , then ‖ ‖ < + by lower semicontinuity of the variation (,), therefore is a BV function.