Search results
Results from the WOW.Com Content Network
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]
The most appropriate clustering algorithm for a particular problem often needs to be chosen experimentally, unless there is a mathematical reason to prefer one cluster model over another. An algorithm that is designed for one kind of model will generally fail on a data set that contains a radically different kind of model. [5]
Luchman, J.N.; CHAIDFOREST: Stata module to conduct random forest ensemble classification based on chi-square automated interaction detection (CHAID) as base learner, Available for free download, or type within Stata: ssc install chaidforest. IBM SPSS Decision Trees grows exhaustive CHAID trees as well as a few other types of trees such as CART.
For example, k-means clustering is equivalent to estimation of the EII clustering model using the classification EM algorithm. [8] The Bayesian information criterion (BIC) can be used to choose the best clustering model as well as the number of clusters.
This category contains algorithms used for cluster analysis. Pages in category "Cluster analysis algorithms" The following 42 pages are in this category, out of 42 total.
The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri
Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...
A number of approaches have been provided which include Principle Angles Configuration (PAC) [19] and Sparse Subspace Clustering (SSC) [20] methods. These work well in two or three motion cases. These algorithms are also robust to noise with a tradeoff with speed, i.e. they are less sensitive to noise but slow in computation.