Search results
Results from the WOW.Com Content Network
The Shockley–Queisser limit, zoomed in near the region of peak efficiency. In a traditional solid-state semiconductor such as silicon, a solar cell is made from two doped crystals, one an n-type semiconductor, which has extra free electrons, and the other a p-type semiconductor, which is lacking free electrons, referred to as "holes."
The Shockley-Queisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of about 34% can be exceeded by multijunction solar cells.
William Bradford Shockley Jr. (February 13, 1910 – August 12, 1989) was an American inventor, physicist, and eugenicist.He was the manager of a research group at Bell Labs that included John Bardeen and Walter Brattain.
The Shockley–Queisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight at 273 K. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of ~34% can be exceeded by multijunction solar cells.
A fact from Shockley–Queisser limit appeared on Wikipedia's Main Page in the Did you know column on 9 November 2008, and was viewed approximately 618 times (check views). The text of the entry was as follows:
However, the current graphical QE analysis still cannot reflect the second intrinsic loss in the efficiency of solar cells, radiative recombination. To take the radiative recombination into account, we need to evaluate the radiative current density, J rad, first. According to Shockley and Queisser method, [29] J rad can be approximated as follows.
Terraria (/ t ə ˈ r ɛər i ə / ⓘ tə-RAIR-ee-ə [1]) is a 2011 action-adventure sandbox game developed by Re-Logic. The game was first released for Windows and has since been ported to other PC and console platforms.
English: The Shockley-Queisser limit for the maximum possible efficiency of a solar cell. The x-axis is the bandgap of the solar cell, the y-axis is the highest possible efficiency (ratio of electrical power output to light power input). (Assumes a single-junction solar cell under unconcentrated light, and some other assumptions too.)