Search results
Results from the WOW.Com Content Network
Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.
While research into this nozzle continues, it could be used before all its advantages are developed. As an upper stage, where it would be used in a low ambient pressure/vacuum environment specifically in closed wake mode, an E-D nozzle would offer weight reductions, length reductions and a potential increase to the specific impulse over bell nozzles (depending on engine cycle) allowing ...
It is independent of the nozzle, making it a useful metric for evaluating propellant combustion alone. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and effective exhaust velocity are dependent on the nozzle design unlike the characteristic velocity, explaining ...
Often referred to as the "Rao's nozzle", it is part of the standard design for rocket engines. [3] The Rao Nozzle is used currently in rocket, missile, and satellite control systems worldwide. It is taught in universities that offer Aerospace Engineering, including Massachusetts Institute of Technology (MIT), [ 4 ] California Institute of ...
A multi-axis thrust vectoring engine nozzle in motion. Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.
General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.
The plug-cluster aerospike engine puts out 90,000 pounds-force (400 kN) of thrust. The engine has a bell-shaped nozzle that has been cut in half, then stretched to form a ring with the half-nozzle now forming the profile of a plug. [8] This rocket design was never launched. The design was abandoned after Firefly Space Systems went bankrupt.
The designation for a specific motor looks like C6-3.In this example, the letter (C) represents the total impulse range of the motor, the number (6) before the dash represents the average thrust in newtons, and the number (3) after the dash represents the delay in seconds from propelling charge burnout to the firing of the ejection charge (a gas generator composition, usually black powder ...