Search results
Results from the WOW.Com Content Network
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
The internal energy of an ideal gas depends only on its temperature, and not on the volume of its containing box, so it is not an energy effect that tends to increase the volume of the box as gas pressure does. This implies that the pressure of an ideal gas has an entropic origin. [5] What is the origin of such an entropic force?
The second law of thermodynamics states that the entropy of an isolated system must increase or remain constant. Therefore, entropy is not a conserved quantity: for example, in an isolated system with non-uniform temperature, heat might irreversibly flow and the temperature become more uniform such that entropy increases. [36]
This local increase in order is, however, only possible at the expense of an entropy increase in the surroundings; here more disorder must be created. [9] [15] The conditioner of this statement suffices that living systems are open systems in which both heat, mass, and or work may transfer into or out of the system. Unlike temperature, the ...
The entropy of mixing is one of these complex cases, when two or more different substances are mixed at the same temperature and pressure. There will be no net exchange of heat or work, so the entropy increase will be due to the literal spreading out of the motional energy of each substance in the larger combined final volume.
The entropy of a given mass does not change during a process that is internally reversible and adiabatic. A process during which the entropy remains constant is called an isentropic process, written Δ s = 0 {\displaystyle \Delta s=0} or s 1 = s 2 {\displaystyle s_{1}=s_{2}} . [ 12 ]
The surroundings will maximize its entropy given its newly acquired energy, which is equivalent to the energy having been transferred as heat. Since the potential energy of the system is now at a minimum with no increase in the energy due to heat of either the marble or the bowl, the total energy of the system is at a minimum.
But as the stress approaches its peak value, the volumetric strain starts to increase. After some more shear, the soil sample has a larger volume than when the test was started. The amount of dilation depends strongly on the initial density of the soil. In general, the denser the soil, the greater the amount of volume expansion under shear.