enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The simplex algorithm and its variants fall in the family of edge-following algorithms, so named because they solve linear programming problems by moving from vertex to vertex along edges of a polytope. This means that their theoretical performance is limited by the maximum number of edges between any two vertices on the LP polytope.

  3. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A BFS can have less than m non-zero variables; in that case, it can have many different bases, all of which contain the indices of its non-zero variables. 3. A feasible solution x {\displaystyle \mathbf {x} } is basic if-and-only-if the columns of the matrix A K {\displaystyle A_{K}} are linearly independent, where K is the set of indices of ...

  4. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The duality theorem states that the duality gap between the two LP problems is at least zero. Economically, it means that if the first factory is given an offer to buy its entire stock of raw material, at a per-item price of y, such that A T y ≥ c, y ≥ 0, then it should take the offer. It will make at least as much revenue as it could ...

  5. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  6. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  7. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Two 0–1 integer programs that are equivalent, in that they have the same objective function and the same set of feasible solutions, may have quite different linear programming relaxations: a linear programming relaxation can be viewed geometrically, as a convex polytope that includes all feasible solutions and excludes all other 0–1 vectors ...

  8. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    The use of cutting planes to solve MILP was introduced by Ralph E. Gomory. Cutting plane methods for MILP work by solving a non-integer linear program, the linear relaxation of the given integer program. The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible ...

  9. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    In general this may be hard, as we need to solve a different minimization problem for every λ. But for some classes of functions, it is possible to get an explicit formula for g(). Solving the primal and dual programs together is often easier than solving only one of them. Examples are linear programming and quadratic programming.