Search results
Results from the WOW.Com Content Network
DNA and RNA also contain other (non-primary) bases that have been modified after the nucleic acid chain has been formed. In DNA, the most common modified base is 5-methylcytosine (m 5 C). In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine ...
In an aqueous solution, the average persistence length has been found to be of around 50 nm (or 150 base pairs). [43] More broadly, it has been observed to be between 45 and 60 nm [44] or 132–176 base pairs (the diameter of DNA is 2 nm) [45] This can vary significantly due to variations in temperature, aqueous solution conditions and DNA ...
Calcium oxide is also a separate mineral species (with the unit formula CaO), named 'Lime'. [30] [31] It has an isometric crystal system, and can form a solid solution series with monteponite. The crystal is brittle, pyrometamorphic, and is unstable in moist air, quickly turning into portlandite (Ca(OH) 2). [32]
The nucleobases are important in base pairing of strands to form higher-level secondary and tertiary structures such as the famed double helix. The possible letters are A , C , G , and T , representing the four nucleotide bases of a DNA strand – adenine , cytosine , guanine , thymine – covalently linked to a phosphodiester backbone.
Ten years after James Watson and Francis Crick published their model of the DNA double helix, [2] Karst Hoogsteen reported [3] a crystal structure of a complex in which analogues of A and T formed a base pair that had a different geometry from that described by Watson and Crick. Similarly, an alternative base-pairing geometry can occur for G ...
One such classic example is in formation of DNA triple helix, where two bases of two antiparallel strands form consecutive Watson-Crick base pairs in a double helix and a base of a third strand form Hoogsteen base pairing with the purine bases of the Watson-Crick base pairs. Many different types of base triples have been reported in the ...
These bonds are weak, easily separated by gentle heating, enzymes, or physical force. Melting occurs preferentially at certain points in the nucleic acid. [3] T and A rich sequences are more easily melted than C and G rich regions. Particular base steps are also susceptible to DNA melting, particularly T A and T G base steps. [4]
Calcium peroxide or calcium dioxide is the inorganic compound with the formula CaO 2. It is the peroxide (O 2 2−) salt of Ca 2+. Commercial samples can be yellowish, but the pure compound is white. It is almost insoluble in water. [3]