enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  3. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero. The likelihood-ratio test, also known as Wilks test , [ 2 ] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier ...

  4. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  5. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    The general formula for G is = ⁡ (), where is the observed count in a cell, > is the expected count under the null hypothesis, denotes the natural logarithm, and the sum is taken over all non-empty cells.

  6. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    Each of the two competing models, the null model and the alternative model, is separately fitted to the data and the log-likelihood recorded. The test statistic (often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference in the log-likelihoods:

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.

  8. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    When two models are nested, models can also be compared using a chi-square difference test. The chi-square difference test is computed by subtracting the likelihood ratio chi-square statistics for the two models being compared. This value is then compared to the chi-square critical value at their difference in degrees of freedom.

  9. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]