Search results
Results from the WOW.Com Content Network
Aromatization is a chemical reaction in which an aromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion of cyclohexane into benzene. Aromatization includes the formation of heterocyclic systems. [1]
1 Uses and reactions. 2 Synthesis. 3 Safety. 4 References. ... Bromocyclohexane can be prepared by the free radical bromination of cyclohexane. Safety
Cyclohexane is a colourless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexane is mainly used for the industrial production of adipic acid and caprolactam, which are precursors to nylon. [5] Cyclohexyl (C 6 H 11) is the alkyl substituent of cyclohexane and is ...
Cyclohexene is most stable in a half-chair conformation, [11] unlike the preference for a chair form of cyclohexane. One basis for the cyclohexane conformational preference for a chair is that it allows each bond of the ring to adopt a staggered conformation. For cyclohexene, however, the alkene is planar, equivalent to an eclipsed conformation ...
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 ...
1-Bromohexane undergoes reactions expected of simple alkyl bromides. It can form Grignard reagents . [ 3 ] It reacts with potassium fluoride to give the corresponding fluorocarbons .
In organic chemistry, dehalogenation is a set of chemical reactions that involve the cleavage of carbon-halogen bonds; as such, it is the inverse reaction of halogenation. Dehalogenations come in many varieties, including defluorination (removal of fluorine ), dechlorination (removal of chlorine ), debromination (removal of bromine ), and ...
The reaction can also be quenched with pyridine, which will scavenge ZnI 2 and excess reagents. [24] Methylation of heteroatoms is also observed in the Simmons–Smith reaction due to the electrophilicity of the zinc carbenoids. For example, the use of excess reagent for long reaction times almost always leads to the methylation of alcohols. [25]