Search results
Results from the WOW.Com Content Network
Escape response in Antarctic krill.. Escape response, escape reaction, or escape behavior is a mechanism by which animals avoid potential predation.It consists of a rapid sequence of movements, or lack of movement, that position the animal in such a way that allows it to hide, freeze, or flee from the supposed predator.
Escape and radiate coevolution produces much more biological variation than other evolutionary mechanisms. For instance, cospeciation is important for diversity amongst species that share a symbiotic relationship, however this does not create nearly as much diversity in comparison to reciprocal evolutionary change due to natural selection. [ 13 ]
Anti-predator adaptations are mechanisms developed through evolution that assist prey organisms in their constant struggle against predators. Throughout the animal kingdom, adaptations have evolved for every stage of this struggle, namely by avoiding detection, warding off attack, fighting back, or escaping when caught.
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
It has been speculated that the ancestral escape mechanism was most likely a backwards jump due to the simultaneous protraction of the legs driven by the ancestors of the Giant Fibers. This behavior was probably similar to the escape system found in a mantis shrimp called Squilla that diverged from the crayfish lineage very early on. It is ...
Neuroethology is an integrative approach to the study of animal behavior that draws upon several disciplines. Its approach stems from the theory that animals' nervous systems have evolved to address problems of sensing and acting in certain environmental niches and that their nervous systems are best understood in the context of the problems they have evolved to solve.
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be ...
The environment includes the species' responses to moisture, temperature, and nutrients, their biotic relationships, availability of flora and fauna to colonize the area, chance dispersal of seeds and animals, soils, climate, and disturbance such as fire and wind. The nature of climax vegetation will change as the environment changes.